Вход
Регистрация

Войти c помощью аккаунта

RFM-анализ

Recency Frequency Monetary

Область применения

Анализ ассортимента товаров и услуг компании по частоте обращения (покупки, заказа и т.д.). Аналогичен ABC-анализу товарных позиций, если в качестве параметра брать число обращений. Используется для определения доходности клиентов, позволяет оценить вероятность их ухода, изучить лояльность клиентов.

Описание

RFM-анализ чаще всего используется для изучения товарного ассортимента по частоте обращений, а также его применяют для классификации клиентов.

Основу RFM-анализа составляют следующие характеристики:

  1. Recency (новизна) – новизна какого-либо события. Чем меньше времени прошло с момента последней активности клиента (последней продажи товара), тем более вероятно, что действие повторится.
  2. Frequency (частота или количество) – количество покупок, которые совершил клиент (количество продаж). Чем их больше, тем выше вероятность того, что клиент повторит действия в будущем. Данный параметр рассматривается за определённый промежуток времени (неделя, месяц, квартал, год и т. д.).
  3. Monetary (деньги) – сумма, которую потратил клиент (выручка от продажи товара). Чем больше потраченная сумма, тем выше вероятность того, что клиент повторит заказ. На практике Monetary обычно не используют, т. к. она сильно коррелирует с Frequency. Поэтому RFM сегментацию часто называют RF сегментацией.

Алгоритм

  1. Классификация по параметру Recency:
    • для каждого клиента определить дату последней покупки;
    • для каждого клиента рассчитать давность покупки (Recency) как разность между текущей датой (в примере 10.01.2008) и датой последней покупки;
    • разбить полученные данные на 5 групп (квантилей). Каждый клиент при этом получит идентификатор от 1 до 5 в зависимости от его активности. Тем, кто недавно осуществлял покупку, будет присвоен код R=5. Те, кто дольше всех не покупал ничего, получат R=1.
  2. Классификация по параметру Frequency:
    • для каждого клиента определить количество покупок за определённый период;
    • разбить полученные данные на 5 групп (квантилей). Клиентам, совершившим наибольшее число покупок, будет присвоен код F=5, наименее активные покупатели получат F=1.
  3. Классификация по параметру Monetary:
    • для каждого клиента определить сумму потраченных денег;
    • разбить полученные данные на 5 групп (квантилей). Клиентам, потратившим наибольшие суммы, будет присвоен код М=5, клиентам, потратившим наименьшие суммы – М=1.
  4. Совместить полученные результаты, каждый клиент при этом получит код RFM, состоящий из трёх цифр.
Рисунок 1 – Сценарий RFM-анализа
Рисунок 2 – Результирующая таблица по RFM-анализу

В начале таблицы располагаются постоянные клиенты, которые чаще всего приносят основную часть прибыли. Для этих клиентов можно разработать специальные предложения. Клиенты с кодом RF=15 являются новыми, и если в этой группе есть те, чей показатель Monetization равен 5, то на них стоит обратить особое внимание.

Требования к данным

Имя поляМетка поляТип данныхВид данных
DateДатаДата/ВремяНепрерывный
ID_ClientID клиентаСтроковыйДискретный
SumСуммаВещественныйНепрерывный

Сценарий